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ABSTRACT
As opposed to deterministic optimization techniques, randomized

optimization algorithms rely on random choices when searching

for good solutions to a given problem. They represent a viable

alternative for solving real-world problems whose properties are

usually unknown and their complexity too high to be solved

with deterministic techniques. In our research group, we are

specialized in studying and designing randomized optimization

algorithms and deploying them in practice. In this paper we

report on our algorithmic studies that have led to successful

industrial applications. We illustrate these with two case studies

from engineering design and production process optimization.
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1 INTRODUCTION
Many problems in science, engineering and business can be for-

mulated as optimization problems, where the task is to find the

best solution among the possible alternatives with respect to

a given criterion. Mathematics and, in particular, operation re-

search provide various optimization methods that are applicable

given that the problems meet certain preconditions, such as lin-

earity, continuity, existence of derivatives, etc. Unfortunately,

real-world problems rarely comply with these requirements. Fre-

quently, their structure and properties are unknown, they may in-

volve several possibly conflicting objectives as well as constraints.

This makes them intractable for traditional mathematical opti-

mization methods. However, with the rise of computing power, a

new class of optimizers, called randomized or stochastic optimiza-

tion algorithms [17] has emerged. Their key characteristic is that,

unlike in deterministic mathematical methods, certain algorithm

steps depend on random choices. Randomized algorithms search

for good solutions according to some heuristic and handle the

problems in a black-box manner, i.e., without dealing with their

structure and properties. Many of them are population-based, as

is the case, for example, with evolutionary algorithms [5].

In the Computational Intelligence Group of the Department of

Intelligent Systems at the Jožef Stefan Institute, we have decades

of experience in studying, designing and deploying randomized

optimization algorithms. In this paper we report on our algorith-

mic studies that have led to successful industrial applications.

The paper is further organized as follows. Section 2 outlines the

research topics dealt with and the proposed algorithms. The next
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two sections present cases studies from their practical applica-

tions. Section 3 overviews our work in engineering design and

focuses on the recent use case of designing an electric motor for

the automotive industry. Section 4 lists the applications in pro-

duction process optimization and presents a system developed

to tune the parameters of a metallurgical production process.

Section 5 summarizes our work and provides ideas for future

development.

2 ALGORITHMIC STUDIES
Our interest in randomized optimization was inspired by the in-

troduction of genetic algorithms as a method to perform search,

optimization, and machine learning [13]. After the initial experi-

ments on test problems and first attempts at solving real-world

problems, we specialized in evolutionary multiobjective opti-

mization [2]. Our early achievement in this area was the design

of the Differential Evolution for Multiobjective Optimization

(DEMO) algorithm [16], which combines the search mechanism

of single-objective Differential Evolution [18] with the concepts

of multiobjective optimization from the NSGA-II algorithm [3]

and finds multiple trade-off solutions in a single algorithm run.

The algorithm was later extended to Asynchronous Master-

Slave DEMO (AMS-DEMO) [4] suitable for solving computation-

ally demanding problems, as it is parallelized and adjusted for

both homogeneous and heterogeneous multiprocessor architec-

tures. Another modification of the basic algorithm was DEMO

based on Gaussian Process models (GP-DEMO) [15], which incor-

porates two practically relevant approaches: surrogate models

for faster evaluation of solutions and newly defined relations for

comparing solutions under uncertainty to minimize the effect of

errors due to inaccurate surrogate model approximations.

Significant attention was also paid to the visualization of op-

timization results. This turned out to be useful in solving both

artificial test problems and real-world problems as it helped better

understand the problems themselves as well as the working of the

algorithms. We introduced a method for visualizing fronts of non-

dominated solutions called visualization with prosections [19]

and created a taxonomy of the existing visualization methods for

multiobjective optimization [8].

3 ENGINEERING DESIGN OPTIMIZATION
We have approached several engineering design optimization

problems using randomized algorithms. The addressed devices

and the related optimization tasks were as follows:

• Electric motor for home appliances – determining the

geometry of its rotor and stator such that the power losses

are minimal [21];

• Energy supply system based on renewable sources – find-

ing its configuration, i.e., the type and the number of its

components (photovoltaic panels, batteries, etc.), such that

both the proportion of unsupplied energy and the costs of

the system construction and operation are minimal [6];



Information Society 2023, 9–13 October 2023, Ljubljana, Slovenia Bogdan Filipič

(a) (b) (c)

Figure 1: An electricmotor for the automotive steering system: (a) a product example (source:MAHLE archive), (b) numerical
simulation of the magnetic field (source: MAHLE archive), (c) visualization of candidate designs with respect to selected
characteristics.

• Cyclone dust separator (a device for removing dust par-

ticles from gas streams, widely used in industry) – deter-

mining, through a number of design variables, its shape

such that the device operates with maximum collection

efficiency and minimum pressure drop [23].

A recent engineering design challenge we dealt with was the

development of an electric motor for the automotive steering

system [20] carried out for MAHLE Electric Drives Slovenija,

an internationally recognized producer of components for the

automotive industry. Specifically, a synchronous electric motor

with surface-mounted magnets was considered. An example of

the product is shown in Figure 1(a).

In the optimization problem formulation, both technical and

economic aspects were involved. The task was to determine the

geometry characteristics of the electric motor and the material

properties of its components in such a way that the motor meets

the technical requirements specified by the customer and its

price is as low as possible. There are 13 design variables and

seven constraints referring to the technical characteristics of the

electric motor, given in the form of either minimum or maximum

value to be respected. The optimization objective to be minimized

is the total price of the electric motor, resulting predominantly

from the costs of the magnets and the copper winding.

In design tasks of this kind, a numerical simulator capable of

evaluating possible solutions (designs) is crucial for the automa-

tion of the design procedure. MAHLE uses the Ansys Maxwell

simulator [1] based on the finite element method that, given

the values of design variables, calculates the values of the re-

garded technical characteristics and the optimization objective

(Figure 1(b) shows the result of the magnetic field simulation).

This makes it possible to approach the problem in a black-box

manner, where the designs are iteratively evaluated and improved.

However, as numerical simulations are time-consuming, the key

challenge is to set up the optimization process in such a way that

it can find good solutions in acceptable time. To solve this design

optimization problem, we implemented a prototype software en-

vironment incorporating measures to speed-up the optimization

process, while additionally ensuring the robustness of solutions

and supporting the design process with visualization.

Themeasures taken to speed-up the optimization process were

the following:

• As an optimization algorithm, a specific version of the

covariance matrix adaptation evolution strategy (CMA-ES)

called lq-CMA-ES [14] was used, which partially replaces

costly simulation-based solution evaluations with fast-

calculating surrogate models.

• Solution evaluation was carried out through a custom-

designed five-step procedure performing a sequence of

solution checks and eliminating a large proportion of in-

feasible solutions without running the costly simulations.

• The most complex step of the solution evaluation proce-

dure, the detailed numerical simulation, was parallelized

to take advantage of the available multicore processors.

Robustness of electric motor designs is related to the limita-

tions of manufacturing where the matching of products with the

optimized design can only be ensured within certain tolerances.

For this reason, the designs are required to be robust in that

small changes in design variables, within the tolerances, do not

significantly affect the characteristics of the electric motors. In

the design process, this was checked by simulating a variety of

designs slightly differing from the original one.

Finally, in addition to producing numerical results in the form

of the optimized values of design variables and the related electric

motor characteristics, the procedure was also required to provide

insight into the solution space. For this purpose, the methods for

data analysis and visualization were applied. Figure 1(c) shows

an example of visualization where, for a chosen pair of design

variables, the value of a selected electric motor characteristic is

indicated by color.

The project resulted in a design of the considered electric mo-

tor model substantially outperforming the prototype initially de-

veloped by the company using a simpler optimization procedure.

As the key achievement, the price of the product was reduced by

10% compared to the price of the initial version. Given that large

series are manufactured, this represents substantial savings for

the company and considerably improves their competitiveness

in the market.

4 PRODUCTION PROCESS OPTIMIZATION
Our practically oriented studies and applied projects in produc-

tion process optimization refer to the following processes and

the related optimization tasks:

• Deep drawing (a particular kind of sheet metal forming

used, for example, in the automotive industry for the man-

ufacturing of car body parts) – increasing the process

stability by tuning the input parameter values [12];

• Clothing production – finding an optimal sequence of

steps in the processing of work orders to minimize the

production preparation costs [11];
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Figure 2: Continuous casting of steel: (a) pouring of molten steel into the mold where the casting process starts, (b) casting
device (source: Štore Steel archive), (c) cooling of billets.

• Continuous casting of steel (a key process in steel produc-

tion) – determining the values of process parameters such

that the conflicting criteria for process safety, productivity,

and product quality are fulfilled [9, 7].

Among these, the largest amount of our work was devoted

to the optimization of steel casting. In this process, molten steel

extracted from the furnace passes through a sequence of rolls

and water sprays in the casting machine where it is cooled and

shaped into semi-finished products. Of crucial importance for

the quality of cast steel is the control of metal flow and heat

extraction during casting. They depend on numerous process

parameters, such as the casting speed and coolant flows. Finding

the optimal values of process parameters is not trivial as the

number of possible parameter settings grows exponentially with

the number of parameters, and trial-and-error parameter tuning

is unattainable in practice. Fortunately, numerical simulators of

the process exist that, integrated with efficient optimizers, allow

for automated computer-aided parameter tuning.

We were dealing with various problem formulations for sev-

eral steel producers. Here we present an optimization system

developed for and installed at Štore Steel, a steel company best

known for their production of spring steels for the automotive

industry. A new casting device at the plant was considered and

the quality of cast steel was of primary concern. Figure 2 shows

the initial stage of the continuous casting process, the casting

device, and the outcome, i.e, cast steel in the form of billets.

The optimization problem was formulated to include six input

variables (process parameters) subject to boundary constraints

and three output variables indicating the process suitability and,

consequently, the expected steel quality. For output variables,

boundary constraints and target values were specified in advance.

The goal of optimization was to find the values of process param-

eters such that the resulting values of output variables respect the

boundary constraints and their deviations from the respective

target values are as small as possible.

Starting with this problem formulation, we designed and im-

plemented a software system to automate the process parameter

tuning [10]. The system consists of the following components:

• An optimization algorithm to search the space of parame-

ter settings and identify the settings representing trade-

offs between the objectives;

• An interface to the numerical simulator of the continu-

ous casting process to evaluate the parameter settings

encountered by the optimization algorithm;

• A visualization method to present the optimization results

and support their analysis.

The optimization algorithm used is Differential Evolution for

Multiobjective Optimization (DEMO) [16]. While exploring the

process parameter space using population-based search, it in-

vokes the simulator to assess the quality of candidate parameter

settings. Progressively, it converges to a set of trade-of solutions.

As a simulator, a numerical model of the steel casting process

based on a meshless method [22] is deployed, designed and cali-

brated for the considered casting machine during its introduction

into production. Given the values of input variables, the simu-

lator numerically evaluates the casting process and returns the

values of output variables.

Visualization of solutions (process parameter settings) result-

ing from the optimization procedure is done in parallel coordi-

nates. This is a method suitable for visualizing multidimensional

spaces. Each dimension corresponds to a parallel axis and a so-

lution is represented as a polyline through the related vertices

on the axes. As illustrated in Figure 3, both input and output

values of solutions are shown in a single plot. Moreover, the user

can interactively analyze the solutions depending on the require-

ments for a particular product order. By indicating the intervals

for selected variables (as shown in the figure for the first two

output variables), one can see what input values are required and

how they affect the remaining output values.

The practical importance of this optimization system is in that

it automates the process parameter optimization and in this way

replaces the time consuming trial-and-error experiments carried

out previously when only the numerical simulator was available.

The automation is particularly beneficial as parameter tuning

has to be performed individually for each steel grade. As a result,

the company is more flexible in responding to customer requests

and achieves a higher quality of their products.

5 CONCLUSION
Randomized optimization is the primary research topic of our

research group. We have contributed to the field with new al-

gorithms exhibiting competitive performance on multiobjective

optimization problems, as well as with the methodological in-

sights into visualization of solutions for this type of problems.

Potential industrial users often see the fact that randomized

optimization algorithms generally return suboptimal solutions

and produce different results over repeated runs as their critical

disadvantage. However, for problems not amenable to mathemat-

ical treatment these algorithms may be the only viable approach.

As frequently found in practice and confirmed by our case studies

as well, substantial gains may result from their deployment.

Our further research efforts are directed towards shifting from

black-box to gray-box problem handling, where the idea is to
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Figure 3: Visualization of optimized process parameter settings in parallel coordinates (blue color indicates solutions
selected by the user).

characterize the problems with features extracted from the sam-

ples of their solutions and then use these features to better un-

derstand the problems [24]. As a future step, problem features

will be matched with algorithm performance to help select the

most efficient algorithm for a given problem. Moreover, in the

applied work we plan to expand from solving specific problems

to providing optimization environments capable of solving sets

of related problems and offering more flexibility to the users.
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